XDL Machine Learning Functions - Implementation Plan
Date: 2025-01-21 Source: IDL Machine Learning Documentation Status: Planning Phase
Overview
IDL provides a comprehensive Machine Learning framework with 50+ functions covering models, optimizers, activation functions, loss functions, normalizers, and utilities. This document analyzes the scope and provides an implementation roadmap for XDL.
Function Categories & Inventory
1. Models & Classifiers (7 functions)
Core Models
- IDLmlAutoEncoder - Autoencoder for unsupervised clustering
- Scope: Neural network architecture for dimensionality reduction
- Complexity: High (requires backpropagation, encoder/decoder architecture)
- Dependencies: Optimization algorithms, activation functions
- Use Cases: Feature learning, anomaly detection, denoising
- IDLmlFeedForwardNeuralNetwork - Multi-layer perceptron classifier
- Scope: Fully connected neural network with configurable layers
- Complexity: High (forward/backward propagation, weight management)
- Dependencies: Optimizers, activation functions, loss functions
- Use Cases: Classification, pattern recognition
- IDLmlKMeans - K-means clustering algorithm
- Scope: Iterative centroid-based clustering
- Complexity: Medium (centroid calculation, distance metrics)
- Dependencies: Distance functions, random initialization
- Use Cases: Data segmentation, pattern grouping
- IDLmlSoftmax - Softmax classifier for multi-class problems
- Scope: Probabilistic multi-class classification
- Complexity: Low-Medium (softmax function, cross-entropy loss)
- Dependencies: None (standalone)
- Use Cases: Multi-class classification, probability estimation
- IDLmlSupportVectorMachineClassification - SVM for classification
- Scope: Maximum margin classifier with kernel functions
- Complexity: High (optimization, kernel tricks, support vectors)
- Dependencies: Kernel functions, optimization
- Use Cases: Binary/multi-class classification, high-dimensional data
- IDLmlSupportVectorMachineRegression - SVM for regression
- Scope: Support vector regression with epsilon-insensitive loss
- Complexity: High (similar to SVM classification)
- Dependencies: Kernel functions, optimization
- Use Cases: Non-linear regression, robust prediction
Evaluation
- IDLmlTestClassifier - Model evaluation and metrics
- Scope: Confusion matrix, accuracy, precision, recall, F1-score
- Complexity: Low (statistical calculations)
- Dependencies: None
- Use Cases: Model validation, performance assessment
2. Data Utilities (2 functions)
- IDLmlPartition - Data partitioning for train/test splits
- Scope: Split datasets into training/validation/test sets
- Complexity: Low (index generation, shuffling)
- Dependencies: Random number generation
- Use Cases: Cross-validation, data preparation
- IDLmlShuffle - Random shuffling of training data
- Scope: Randomize order of features and labels
- Complexity: Low (permutation generation)
- Dependencies: Random number generation
- Use Cases: Data augmentation, batch generation
3. Normalizers (5 functions)
Data preprocessing for feature scaling:
- IDLmlLinearNormalizer - Linear scaling:
out = in * scale + offset- Complexity: Low (simple arithmetic)
- IDLmlRangeNormalizer - Scale to range [0, 1]
- Complexity: Low (min-max scaling)
- IDLmlTanHNormalizer - Hyperbolic tangent scaling to (-1, 1)
- Complexity: Low (tanh function)
- IDLmlUnitNormalizer - Unit range scaling
- Complexity: Low (normalization)
- IDLmlVarianceNormalizer - Standardization (mean=0, std=1)
- Complexity: Low (z-score normalization)
4. Optimizers (5 functions)
Gradient-based optimization algorithms for training neural networks:
- IDLmloptAdam - Adaptive Moment Estimation
- Complexity: Medium (momentum + adaptive learning rate)
- State: Maintains first/second moment estimates
- IDLmloptGradientDescent - Basic gradient descent
- Complexity: Low (simple weight updates)
- State: None (stateless)
- IDLmloptMomentum - Gradient descent with momentum
- Complexity: Low-Medium (velocity tracking)
- State: Maintains velocity vectors
- IDLmloptQuickProp - QuickProp algorithm
- Complexity: Medium (second-order approximation)
- State: Maintains previous gradients
- IDLmloptRMSProp - Root Mean Square Propagation
- Complexity: Medium (adaptive learning rate)
- State: Maintains squared gradient averages
5. Activation Functions (17 functions)
Non-linear transformations for neural networks:
Basic Activations
- IDLmlafIdentity -
f(x) = x(linear) - IDLmlafBinaryStep -
f(x) = (x >= 0) ? 1 : 0 - IDLmlafLogistic - Sigmoid:
f(x) = 1 / (1 + e^-x) - IDLmlafTanH - Hyperbolic tangent:
f(x) = tanh(x)
ReLU Family
- IDLmlafReLU - Rectified Linear Unit:
f(x) = max(0, x) - IDLmlafPReLU - Parametric ReLU (learnable parameter)
- IDLmlafELU - Exponential Linear Unit
- IDLmlafISRU - Inverse Square Root Unit
- IDLmlafISRLU - Inverse Square Root Linear Unit
Advanced Activations
- IDLmlafArcTan -
f(x) = atan(x) - IDLmlafBentIdentity - Bent identity function
- IDLmlafGaussian - Gaussian activation
- IDLmlafSinc - Sinc function:
f(x) = sin(x)/x - IDLmlafSinusoid - Sine wave activation
Soft Functions
- IDLmlafSoftmax - Softmax:
f(x_i) = e^x_i / Σe^x_j - IDLmlafSoftPlus - Smooth ReLU:
f(x) = ln(1 + e^x) - IDLmlafSoftSign -
f(x) = x / (1 + |x|) - IDLmlafSoftExponential - Parametric exponential
Complexity: Low (mathematical functions) Implementation: Can use Rust’s libm or similar
6. SVM Kernels (4 functions)
Kernel functions for Support Vector Machines:
- IDLmlSVMLinearKernel -
K(x, y) = x · y - IDLmlSVMPolynomialKernel -
K(x, y) = (γx·y + r)^d - IDLmlSVMRadialKernel - RBF:
K(x, y) = exp(-γ||x-y||²) - IDLmlSVMSigmoidKernel -
K(x, y) = tanh(γx·y + r)
Complexity: Low-Medium (dot products, distance calculations) Use: Transform data into higher-dimensional spaces
7. Loss Functions (5 functions)
Objective functions for training:
- IDLmllfCrossEntropy - Classification loss
- Formula:
-Σ y_true * log(y_pred) - Use: Multi-class classification
- Formula:
- IDLmllfHuber - Robust regression loss
- Formula: Quadratic for small errors, linear for large
- Use: Robust to outliers
- IDLmllfLogCosh - Log-cosh loss
- Formula:
log(cosh(y_pred - y_true)) - Use: Smooth approximation of MAE
- Formula:
- IDLmllfMeanAbsoluteError - MAE/L1 loss
- Formula:
mean(|y_pred - y_true|) - Use: Regression, robust to outliers
- Formula:
- IDLmllfMeanSquaredError - MSE/L2 loss
- Formula:
mean((y_pred - y_true)²) - Use: Regression, standard loss
- Formula:
Complexity: Low (simple calculations)
Implementation Priority & Phases
Phase ML-1: Foundation (Estimated: 2-3 weeks)
Goal: Core utilities and simple algorithms
- Data Utilities (Priority: Critical)
- ✅ IDLmlPartition - train/test split
- ✅ IDLmlShuffle - data shuffling
- Normalizers (Priority: High)
- ✅ IDLmlLinearNormalizer
- ✅ IDLmlRangeNormalizer
- ✅ IDLmlVarianceNormalizer
- ✅ IDLmlTanHNormalizer
- ✅ IDLmlUnitNormalizer
- Simple Model (Priority: High)
- ✅ IDLmlKMeans - K-means clustering
- ✅ IDLmlTestClassifier - evaluation metrics
Deliverables: 9 functions, working data pipeline
Phase ML-2: Activation & Loss Functions (Estimated: 1-2 weeks)
Goal: Building blocks for neural networks
- Basic Activations (Priority: High)
- ✅ IDLmlafIdentity, ReLU, Sigmoid, TanH
- ✅ IDLmlafSoftmax, SoftPlus, SoftSign
- Advanced Activations (Priority: Medium)
- ✅ ELU, PReLU, ISRU, ISRLU
- ✅ ArcTan, Gaussian, Sinc, etc.
- Loss Functions (Priority: High)
- ✅ MSE, MAE, CrossEntropy
- ✅ Huber, LogCosh
Deliverables: 22 functions, activation/loss library
Phase ML-3: Optimizers (Estimated: 1-2 weeks)
Goal: Training algorithms for neural networks
- Basic Optimizers (Priority: High)
- ✅ IDLmloptGradientDescent
- ✅ IDLmloptMomentum
- Advanced Optimizers (Priority: High)
- ✅ IDLmloptAdam (most popular)
- ✅ IDLmloptRMSProp
- ✅ IDLmloptQuickProp
Deliverables: 5 optimizers, training framework
Phase ML-4: Neural Networks (Estimated: 3-4 weeks)
Goal: Implement feed-forward and autoencoder models
- Neural Network Core (Priority: High)
- ✅ IDLmlFeedForwardNeuralNetwork
- Forward/backward propagation
- Layer management
- Weight initialization
- Autoencoder (Priority: Medium)
- ✅ IDLmlAutoEncoder
- Encoder/decoder architecture
- Unsupervised training
Deliverables: 2 complex models, neural network framework
Phase ML-5: Support Vector Machines (Estimated: 2-3 weeks)
Goal: SVM for classification and regression
- Kernel Functions (Priority: High)
- ✅ Linear, Polynomial, RBF, Sigmoid kernels
- SVM Models (Priority: High)
- ✅ IDLmlSupportVectorMachineClassification
- ✅ IDLmlSupportVectorMachineRegression
- SMO algorithm or libsvm integration
Deliverables: 6 functions, SVM framework
Phase ML-6: Advanced Models (Estimated: 1 week)
Goal: Complete the ML suite
- Remaining Models (Priority: Medium)
- ✅ IDLmlSoftmax classifier
Deliverables: Complete ML function set
Technical Architecture
Rust Crate Structure
xdl-ml/
├── Cargo.toml
├── src/
│ ├── lib.rs # Main module exports
│ ├── models/
│ │ ├── mod.rs
│ │ ├── kmeans.rs # K-means
│ │ ├── neural_network.rs # Feed-forward NN
│ │ ├── autoencoder.rs # Autoencoder
│ │ ├── svm.rs # SVM classification/regression
│ │ └── softmax.rs # Softmax classifier
│ ├── optimizers/
│ │ ├── mod.rs
│ │ ├── gradient_descent.rs
│ │ ├── momentum.rs
│ │ ├── adam.rs
│ │ ├── rmsprop.rs
│ │ └── quickprop.rs
│ ├── activations/
│ │ ├── mod.rs
│ │ ├── basic.rs # Identity, Binary, Sigmoid, TanH
│ │ ├── relu.rs # ReLU family
│ │ ├── soft.rs # Softmax, SoftPlus, SoftSign
│ │ └── advanced.rs # Gaussian, Sinc, etc.
│ ├── losses/
│ │ ├── mod.rs
│ │ ├── mse.rs
│ │ ├── mae.rs
│ │ ├── cross_entropy.rs
│ │ ├── huber.rs
│ │ └── logcosh.rs
│ ├── normalizers/
│ │ ├── mod.rs
│ │ ├── linear.rs
│ │ ├── range.rs
│ │ ├── variance.rs
│ │ ├── tanh.rs
│ │ └── unit.rs
│ ├── kernels/
│ │ ├── mod.rs
│ │ └── svm_kernels.rs # Linear, Polynomial, RBF, Sigmoid
│ ├── utils/
│ │ ├── mod.rs
│ │ ├── partition.rs # Train/test split
│ │ ├── shuffle.rs # Data shuffling
│ │ └── metrics.rs # Evaluation metrics
│ └── tests/
│ ├── mod.rs
│ └── integration_tests.rs
External Dependencies
[dependencies]
ndarray = "0.15" # N-dimensional arrays
rand = "0.8" # Random number generation
num-traits = "0.2" # Numeric traits
approx = "0.5" # Approximate comparisons
# Optional advanced dependencies
smartcore = "0.3" # Ready-made ML algorithms (optional)
linfa = "0.7" # Rust ML framework (optional)
Implementation Complexity Analysis
Easy (1-2 days each)
- Data utilities (Partition, Shuffle)
- Normalizers (5 functions)
- Basic activation functions (Identity, ReLU, Sigmoid, TanH)
- Loss functions (MSE, MAE, CrossEntropy)
- Simple optimizers (GradientDescent, Momentum)
- Test metrics (TestClassifier)
Total: ~20 functions, 2-3 weeks
Medium (3-5 days each)
- K-means clustering
- Advanced activation functions (ELU, PReLU, etc.)
- Advanced optimizers (Adam, RMSProp, QuickProp)
- SVM kernels
- Softmax classifier
Total: ~15 functions, 3-4 weeks
Hard (1-2 weeks each)
- Feed-forward neural network (backpropagation, layer management)
- Autoencoder (encoder/decoder architecture)
- SVM classification (SMO algorithm or optimization)
- SVM regression
Total: 4 functions, 6-8 weeks
Estimated Total Timeline
- Phase ML-1: 2-3 weeks (Foundation)
- Phase ML-2: 1-2 weeks (Activations/Losses)
- Phase ML-3: 1-2 weeks (Optimizers)
- Phase ML-4: 3-4 weeks (Neural Networks)
- Phase ML-5: 2-3 weeks (SVM)
- Phase ML-6: 1 week (Completion)
Total Estimated Time: 10-15 weeks (2.5-4 months)
With focused development and reuse of existing Rust ML libraries (smartcore, linfa), this could be reduced to 8-10 weeks.
Success Criteria
Functional Requirements
- ✅ All 46 ML functions implemented
- ✅ Compatible with IDL ML API
- ✅ Comprehensive test coverage (>80%)
- ✅ Example scripts for each model
Performance Requirements
- Training speed comparable to Python scikit-learn
- Memory efficient for large datasets
- Multi-threading support for training
Documentation Requirements
- API documentation for each function
- User guide with examples
- Migration guide from IDL ML
Next Steps
- Review & Approve Plan: Validate scope and timeline
- Setup xdl-ml Crate: Create module structure
- Start Phase ML-1: Implement foundation (data utils + normalizers + k-means)
- Iterative Development: Phase by phase with testing
- Integration: Wire ML functions into XDL standard library
Notes
- Some functions may benefit from using existing Rust ML crates (smartcore, linfa) to accelerate development
- Neural network backpropagation is the most complex component
- SVM optimization may require specialized libraries or custom SMO implementation
- Consider implementing most-used functions first (K-means, NN, SVM classification)
Ready to proceed with Phase ML-1 implementation!